
Available online at www.sciencedirect.com

s 71 (2008) 237–248
www.elsevier.com/locate/jmarsys
Journal of Marine System
Climate–ocean variability and Pacific hake: A geostatistical
modeling approach

V.N. Agostini a,⁎, A.N. Hendrix b, A.B. Hollowed c, C.D. Wilson c,
S.D. Pierce d, R.C. Francis a

a School of Aquatic and Fishery Science, University of Washington, Box 355020, Seattle WA 98149, USA
b R2 Resource Consultants, Inc., 15250 NE 95th Street, Redmond, WA 98052, USA

c National Marine Fisheries Service-AFSC, Sand Point Way, Seattle, WA 98143, USA
d Oregon State University-COAS, 104 COAS Admin Bldg, Corvallis, OR 97331, USA

Received 15 June 2006; received in revised form 18 December 2006; accepted 23 January 2007
Available online 13 November 2007
Abstract

Climate forcing of the California Current has been known to impact the distribution and abundance of a number of local fish
populations, but the mechanisms involved remain poorly understood. Climate metrics such as the Pacific Decadal Oscillation
(PDO) and the El Niño Southern Oscillation (ENSO) are usually used to represent climate processes and direct links are made
between climate forcing and production variability. This involves aggregation of impacts across large spatial scales and range of
species. However, fluctuations in productivity are often the result of changes in physical habitat. In order to fully understand the
relationship between climate and productivity, habitat changes should be addressed. In this study we use a geostatistical approach
to quantify adult Pacific hake habitat during different climate regimes. Several authors have suggested that the distribution and
intensity of the sub-surface poleward flow (the undercurrent) plays a key role in defining adult hake habitat along the west coast of
North America. Here we build a model designed to predict hake habitat distribution in space based on sub-surface poleward flow
distribution and bottom depth. Our results show that hake habitat expands in 1998 El Niño year compared to 1995. Given the
important predatory role that hake plays in the CC, the amount and distribution of adult hake habitat has large implications for the
Pacific Northwest food web and could thus serve as an ecosystem indicator representing important physical–biological
interactions. Spatially based ecosystem indicators such as the one we develop here address two important yet neglected areas in the
‘Ecosystem Indicators debate’: the importance of developing metrics explicitly representing spatial and environmental processes
shaping ecosystem structure. Without these, our power to fully describe ecosystems will be limited.
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1. Introduction

The production variability of a number of California
Current (CC) fish species has been related to climate
forcing (Ware and McFarlane, 1995; MacCall, 1996).
Habitat variability is often invoked as the potential link
between the two (Ware and McFarlane, 1995; MacCall,
1996; Benson et al., 2002), but the mechanisms
involved remain poorly understood (Beamish et al.,
2000). The use of climate metrics (i.e. Pacific Decadal
Oscillation, El Niño Southern Oscillation) to represent
potential environmental forcing on fish populations and
ecosystems (e.g., Hare and Mantua, 2000) usually
involves the aggregation of impacts across large spatial
scales and range of species. Direct links are made
between climate forcing and production variability.
However, fluctuations in productivity are often the
result of changes in physical habitat and food avail-
ability. In order to gain a complete understanding of the
link between climate and production variability habitat
changes should be addressed.

Habitat in terrestrial systems has long been inter-
preted as vegetation, sometimes with underlying gra-
dients of moisture or soil chemistry (Rice, 2001). This
definition seems to have been transferred to marine
environments where classic definitions of marine habitat
(e.g. rocky intertidal, kelp forests, coral reefs) usually
involve vegetation or substrate types, which are all static
features. While this is appropriate for benthic commu-
nities, it is not appropriate for organisms or animals that
spend part of or their entire life-cycle in the pelagic
zone. For these species habitat is often a dynamic entity,
its boundaries changing according to time/space
changes of the physical oceanographic variables defin-
ing it.

Understanding how pelagic habitats are distributed in
space and how their characteristics vary will contribute
to our understanding of ecosystem processes and the
sustainability of fish populations (Kracker, 1999). Late-
ly, researchers have placed more emphasis on recogniz-
ing the importance of spatial patterns in ecological
processes (Petitgas, 1993; Horne and Schneider, 1995;
Petitgas, 1998). Recent discussions regarding the long-
term sustainability of ocean resources have focused on
the need to understand the spatial distribution as well as
the size of fish populations (Kracker, 1999). Quantifying
these patterns has been recognized as an essential
component of our research efforts to understand how
harvest pressure and climate change impact the sustain-
ability of fish stocks (Wiebe et al., 1996).

Individual fish often position themselves in response
to a combination of features of the marine environment
(Maravelias et al., 1996) and in relation to other fish.
Their distribution is not random, either in space or time,
but rather organized in structures (schools, aggrega-
tions). Geostatistics is a branch of applied statistics that
focuses on detecting, modeling and estimating spatial
patterns (Rossi et al., 1992). This type of modeling
approach assumes spatial dependence (the value at one
location is conditioned by the values at neighboring lo-
cations) instead of spatial independence (values at one
location are independent of values at neighboring loca-
tions). Spatial dependence is very important in ecology,
“the scientific study of the relationships between or-
ganisms and their environments” (McNaughton and
Wolf, 1973), yet traditional statistics typically fail to
take spatial dependence into account (Rossi et al.,
1992). During the last decade a number of studies have
applied geostatistical techniques, which were initially
developed for terrestrial applications, to marine systems
(Petitgas, 2001). Their focus has been on a number of
fishery problems, ranging from estimating abundances
from survey data (Simard et al., 1992; Conan et al.,
1994; Barange and Hampton, 1997; Fletcher and
Summer, 1999; Barange et al., 2005) to quantifying
relationships between environmental variables and fish
distributions (Maravelias et al., 1996).

Pacific hake (Merluccius productus) is a commercially
and ecologically important species in the CC System. It
accounts for 61% of the pelagic biomass in the California
Current system (Ware andMcFarlane, 1995) affording it a
key position as both predator and prey in the coastal food
web (Livingston and Bailey, 1985). Although distinct
populations of Pacific hake also exist in the Strait of
Georgia (McFarlane and Beamish, 1985), Puget Sound
(Pedersen, 1985) and inlets of thewest coast ofVancouver
Island (McFarlane and Beamish, 1985), the offshore
population is of greatest economic importance, as it
contributes large biomass for fisheries in both Canadian
and United States (US) waters (Francis et al., 1989; Smith
et al., 1990; Helser et al., 2004). Pacific hake spawn off
the coast of California in the winter and migrate north to
feed off the coast of Washington and British Columbia in
the summer (Fig. 1). A great deal of controversy revolves
around this fishery. The largest and most valuable fish
migrate farther north (McFarlane and Beamish, 1985) and
dramatic variability in the interannual distribution of
biomass (Fig. 2) and therefore yield of hake between
Canada and the US exists.

Several authors have suggested that Pacific hake
distribution may be related to poleward flow, with
stronger flow aiding the migration of hake, and weaker
flow impeding it (Smith et al., 1990; Dorn, 1995; Benson
et al., 2002; Agostini et al., 2006). Agostini et al. (2006)
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discuss the variability of sub-surface poleward flow (the
undercurrent) in the CC as well as the links with climate
and hake abundance and distribution. By using acoustic
data they examine sub-surface flow characteristics in
1995 and 1998 and their relationship with hake
abundance and distribution. Their results show that the
distribution and intensity of the undercurrent plays a key
role in defining adult hake habitat along the west coast of
North America; for example, habitat expands possibly as
a result of changes in location and intensity of the
poleward undercurrent in El Niño years. Here we test this
hypothesis, and use a geostatistical approach to quantify
adult Pacific hake habitat during different climate
regimes. We model changes in amount and distribution
of hake adult habitat as defined by the poleward
undercurrent and examine the possibility of using the
undercurrent as a predictive index of adult hake habitat
abundance. Finally we discuss the potential role of hake
habitat as a CC ecosystem indicator.
Fig. 1. Schematic representations of Pacific hake m
2. Methods

2.1. Study area

Data on hake abundance and distribution along the
west coast of North America have been collected
starting in 1977 by the National Marine Fishery Services
(NMFS) and starting in 1992 in collaboration with the
Department of Fisheries and Oceans Canada (DFO).
Summer echo-integration trawl surveys have been
conducted on a triennial basis along the continental
shelf from California to the northern limit of hake
aggregations in British Columbia. Details of the
triennial surveys are available in Wilson et al. (2000).
Surveys run from July 1 to September 1 off the west
coast of North America. Transects are on average 52 km
long and 18 km apart, generally running mid-shelf to
mid-slope between the 50 and 1500 m isobaths. Our
analysis focused on a sub-section of the survey area
igrations in the California Current system.



Fig. 2. Acoustic backscatter signal representative of hake abundance during 1998 (warm year) and 2001 (cold year). Data from the National Marine
Fisheries Service-Alaska Fisheries Science Center (NMFS-AFSC).
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(38°–43°N). In order to capture conditions during
different climate regimes, we analyzed survey data
from 1995 (a neutral year) and 1998 (an El Niño year).

2.2. Biological data

Abundance and distribution of adult hake were
derived from acoustic data collected using a Simrad
EK500 quantitative echosounding system (Simrad Inc.,
Lynwood Wash.) split-beam transducers (38 and
120 kHz; Simrad Inc.) mounted on the bottom of the
vessel hull, 9 m below the surface (Wilson et al., 2000).
Data collected with the 38 kHz transducer were used in
this study. Standard target strength–length relationships
were used to convert acoustic backscatter to fish density.
The target strength relationship used was TS=20logL-
68, where L represents fish length measured in
centimeters. For detailed methods on data processing
see Wilson and Guttormsen (1997) and Wilson et al.
(2000). Fish values (numbers of fish) at each location i,
j, represent an average of measurements taken at that
location over 48 10 m depth bins (0–480 m).

2.3. Physical data

Distribution and intensity of alongshore (north/south)
flow were derived from an RD instrument 153.6 kHz
narrow-band, hull mounted shipboard acoustic Doppler
current profiler (ADCP). A vertical bin width of 8 m was
used, pulse length of 8m, and an ensemble averaging time
of 2.5 min. The depth range of good data (good
pingsN30%) was typically 22–362 m. The ADCP was
slaved to the Simrad EK500 to avoid interference. Pre-
survey tests confirmed no interference between the two
instruments when the ADCP was in water-pulse mode.
When the ADCP bottom-track feature was enabled,
however, an artificial signal was detected on the EK500.
For this reason, bottom trackingwas never enabled during
the survey. GPS P-code navigation was used for position
and gyrocompass for heading, to determine absolute
velocities. Tidal currents remain in the processed ADCP
velocities. These are expected to be small (b0.05 m/s)
offshore of the shelf break (Erofeeva et al., 2003). For
detailed ADCP processing methods, see Pierce et al.
(2000). The flow value at each location i, j represents flow
values averaged over the 120–330 m depth bins, depths
reported as typical of the California undercurrent
(Agostini et al., 2006; Pierce et al., 2000).

2.4. Modeling approach

2.4.1. Structural analysis
The goal of the structural analysis is to evaluate

which physical variables are associated with hake
habitat. The focus therefore is on the regression between
hake abundance and physical variables that define
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habitat. There is spatial correlation among the observa-
tions, however, that must be incorporated into the
structural analysis. We describe how particular habitat
variables are related to hake abundance at a particular
location (station) by means of models that assume
spatial dependence (geostatistical analysis). We incor-
porated models that assume spatial independence as
subsets of models that assumed spatial dependence.

The regression models are based on a hierarchical
generalized linear modeling framework in which the
errors from the regression are assumed to be spatially
correlated (Diggle et al., 1998). The data are modeled as
a function of predictor variables, associated coefficients,
and error. The error is further modeled by a correlation
function and a set of coefficients that define the degree
of spatial correlation. We present the modeling frame-
work first in its entirety and then describe the two levels
of the hierarchy.

Assume the hake abundance Yi (number of hake at
location, xi=1, …N), is a function of habitat quality at
that location xi, and by the hake in surrounding locations
xj=1,…,i−1,…N, j≠ i.

Yi ¼ Ai þ S xið Þ þ ei ð1Þ
where μi is a mean effect (see habitat discussion below),
xi the observation location, S(xi) is a stationary
Gaussian process with expected value E[S(x)] =0 and
cov S xið Þ; S xj

� �� � ¼ r2q xi � xj
� �

(σ2 = variance; ρ =
correlation coefficient) and e are mutually independent
Gaussian random variables with mean=0, and var-
iance= τ2 (Diggle et al., 1998).

2.4.2. Habitat
In biological terms, μi is the effect of habitat, and can

be modeled as a function of covariates (e.g., μi=β0+
β1*C1, where Ci is a covariate measured at location xi).
Current (average alongshore current velocity over
120 m–330 m sub-surface layer) and depth (bottom
depth) were hypothesized to affect habitat using several
competing mechanisms. Habitat quality was hypothe-
sized to be affected by:

• depth only
• current only
• depth and current
• depth and current, an interaction term
• depth and a unimodal effect of current (intermediate
levels of current produce higher habitat quality than
minimum or maximum levels).

The working hypotheses were evaluated to determine
which hypothesis was the most likely given the data.
Akaike's Information Criterion (AIC) was used to rank
each of the models. The AIC statistic, estimated with the
addition of each new parameter to the model, accounts
for degrees of freedom used and the goodness of fit such
that more parsimonious models have a lower AIC
(Chambers and Hasties, 1992).

2.4.3. The spatial process
The spatial process, S(xi), is due to a self organization

process such as the aggregation of schooling fish. The
presence of a strong S(xi) process will result in fish
abundance appearing “clumped” spatially. Spatial auto-
correlation affects the regression by effectively reducing
the degrees of freedom for the regression (Cressie,
1993). In spatially correlated observations, the distance
between samples is informative about the level of abun-
dance at another location (i.e., measures of abundance at
short distances are more like the current observation
than measures of abundance that are far away). The level
of autocorrelation therefore provides useful information
on the nature of the spatial structure and will depend on
the distance or lag between two samples.

2.4.4. Variogram estimation
The analysis of spatial structure involved two steps.

The first step was to use an empirical variogram to
describe the spatial structure of the abundance measure-
ments. This allowed us to quantify the spatial depen-
dency and partition it along the various distance classes.
The empirical variogram represents the semi-variance
between data points as a function of the spatial distance
(lag) between them. The experimental variogram was
calculated using:

g⁎ hð Þ ¼ 1
2n hð Þ

Xn hð Þ

i

f xið Þ � f xi þ hð Þ½ �2 ð2Þ

Where γ⁎(h) represents the empirical variogram for
distance h, n(h) is the number of points separated by lag
h, and f (xi) is the value at data point xi (Petitgas, 1998).
All the grid samples in the sub-section of the sampling
area were included in the variogram calculation.
Variogram behavior was assumed to be the same in all
directions, thus the results presented correspond to
omnidirectional variograms.

2.4.5. Variogram model fitting
The spatial autocorrelation, S(x), can be modeled

with a covariance function, or with a semi-variance
function. We choose to model it with semi-variance as
this is the common approach in geostatistics (Cressie,
1993); therefore, we used an exponential variogram to



Fig. 3. Fits of model (a) without spatial autocorrelations predictions
and (b) with spatial autocorrelation. Units: log number of fish.

Table 1
Model formulations

Models without autocorrelation term AIC
nacβ0+

nacβ1depth 7092
nacβ0+

nacβ1current 7153
nacβ0+

nacβ1current+
nacβ2depth 7056

nacβ0+
nacβ1current+

nacβ2depth+
nacβ3current⁎depth 7186

nacβ0+
nacβ1current

2+nacβ2current+
nacβ3depth 7057

Models without autocorrelation term AIC

β0+β1depth+S(x) 6016
β0+β1current+S(x) 6018
β0+β1current+β2depth+S(x) 6017
β0+β1current+β2depth+β3current⁎depth+S(x) 6019
β0+β1current

2+β2current+β3depth+S(x) 6014

Value in bold indicates model chosen based on AIC value. Please note
that differences in AICN=7 indicates strong support for the lower
valued model. The model covariates are: depth=bottom depth and
current=sub-surface alongshore flow velocity (120–330 m). The
inclusion of a spatial process in the error component is represented by
S(x).
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model the spatial autocorrelation in observations. In the
initial stages of model development, a spherical vario-
gram was also fitted to the data; however, the expo-
nential variogram shape appeared to be more closely fit
the residual spatial variation. The exponential variogram
can be described by the equation

g x� xVð Þ ¼ s2 þ r2 1� exp � x� xVð Þ
/

� �� 	
ð3Þ

where τ2 is the variability at scales smaller than the
distance between samples and variability due to
measurement error (the nugget effect), ϕ is the distance
over which samples are spatially autocorrelated (range),
and σ2 is the background variability that occurs at dis-
tances greater than the range (sill).

We then estimated linear regression and variogram
model parameters simultaneously using the geoR
package (Ribiero and Diggle, 2001) in the R software
(http://www.r-project.org/).

2.4.6. Model selection and validation
The AIC statistic was used to rank models with

spatial autocorrelation as well as models lacking spatial
autocorrelation. Furthermore, to evaluate the fit between
model and observations for the model with the lowest
AIC, we applied a cross-validation method to a sub-set
of the data. This method has been used for optimal
choices of variogram models (Petitgas and Poulard,
1989; Simard et al., 1992). The procedure consists of
deleting one datum and using the remaining data to
predict the deleted value using the chosen model.
3. Results

Geostatistical regression models, which included
explicit spatial autocorrelation, were superior to stan-
dard statistical regression for explaining trends in hake
abundance. In general, models with autocorrelation fit
the data substantially better than models without
autocorrelation as indicated by AIC values (Table 1).
Differences in AIC values of 7 or more are considered to
be strong support for a lower AIC model (Burnham and
Anderson, 2002), and the average decrease in AIC in the
models with autocorrelation was approximately 900 U.
This disparity in model fit is evident in the observed to
predicted plots under the best fit model with auto-
correlation and the same model without the spatial
autocorrelation component (Fig. 3).

Within the regression models with autocorrelation,
the best fitting model (AIC=6014) was:

y ¼ b0 þ b1current
2 þ b2currentþ b3depthþ S xð Þ; ð4Þ

where y=number of fish, depth=bottom depth, and
current=sub-surface alongshore flow velocity (120–
330 m). This model was 2 AIC units lower than any of
the other models, which suggested moderate support
over the other models (Burnham and Anderson, 2002).

The model described in Eq. (4) has a spatial process
error component S(x) that was modeled by an
exponential variogram consisting of a nugget, sill, and

http://www.r-project.org/


Table 2
Model parameter estimates for the model structure with the lowest AIC
value (autocorrelated model) and model parameter estimates for the
same model without spatial autocorrelation

Parameter Mean value Standard deviation

Model without autocorrelation term: nacβ0+
nacβ1current

2+
nacβ2current+

nacβ3depth
β0
nac 12.68 0.49
β1
nac −5.73 13.5
β2
nac 2.90 2.92
β3
nac −0.006 0.0004

Model with autocorrelation term β0+β1current
2+β2current+

β3depth+S(x)
β0 8.20 0.992
β1 20.28 12.04
β2 −3.75 3.009
β3 −0.0025 0.00087
τ2 (nugget) 2.81
ϕ (range) 3.67 km
σ2 (sill) 39.28
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range (Table 2, Fig. 4). The nugget (2.81) represents
variability at distances less than the smallest distance
between sample stations or variability due to measure-
ment error. The range (2.67 km) is the average distance
beyond which points are no longer spatially correlated.
The sill (39.28) quantifies the maximum level of
variability among points or the variability that occurs
at large distances. The fitted variogram suggests that
there is a substantial spatial component to the hake
abundance after accounting for the effects of current and
depth. In biological terms, hake abundance is a function
of the physical attributes present in the environment
(habitat) as well as a function of where other hake are
located (schooling or aggregating).
Fig. 4. Experimental variogram (semi-variance between data points as
a function of distance) fitted to an exponential function (solid line).
3.1. Model inference

Inference on hake habitat relationships was based on
inference from the model in Eq. (4). Namely, sub-surface
flow and bottom depth were important determinants of
hake habitat. We refer to the model represented in Eq. (4)
as the hake habitat model with autocorrelation (HHMAC),
and the same model structural form without autocorrela-
tion (i.e., y= β0 + β1current

2+β2current+β3depth) as
(HMM) from this point forward. The HMM model was
the second best model among models without autocorre-
lation (Table 1) and received almost equivalent support as
the best fitting model (difference of 1 AIC unit). We
comment on the results that would have been obtained if
the HMMmodel had been used rather than the HMMAC
model to illustrate the importance of accounting for spatial
autocorrelation.

The relationship between habitat and hake abundance
are different under the HMM and HMMAC models.
Both models indicate curvi-linear relationships between
current and hake abundance. The model without auto-
correlation (HMM) indicates that the sub-surface flow
hake relationship is dome-shaped with current velocities
Fig. 5. Relationship between hake abundance and current velocity as
predicted by the model without autocorrelation (upper panel) and the
model with autocorrelation (lower panel).



Fig. 6. Predicted hake habitat given bottom depth and undercurrent velocities. Light grey represents less suitable habitat (number of fishb1100), dark
grey represents more suitable habitat (number of fishN1100). Pie charts represent overall habitat distribution for 1995 and 1998.
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near zero leading to higher amount of favorable hake
habitat (Fig. 5a). The best formulation for the model with
autocorrelation (HMMAC) shows the opposite trend,
with high and low flow velocities leading to higher
amount of favorable hake habitat (Fig. 5b). The direction
of the velocity did not appear to be important in the
HMMAC model, however (Fig. 5b). In addition, the
effect of depth is diminished (smaller absolute value of
coefficient) in the HMMAC model (Table 2). To
summarize, high quality hake habitat would have been
expected at low current velocities under the HMM
model, whereas high quality hake habitat would be
expected at greater velocities in the HMMAC model.

Predicted hake habitat in 1995 was calculated by
implementing the mean effect component of Eq. (4)
using model coefficients from the HMMAC model and
covariate values (depth and current velocity) from
sampling stations in 1995 (Fig. 6). In addition, pre-
dictions of hake habitat under the physical conditions in
1998 were also made (Fig. 6). The fit of the auto-
correlation model to 1998 data is inferior to the fit to the
1995 data (Fig. 7). More variability was explained by
fitting a mean term to the observed 1998 data (residual
sums of squares of mean estimate=3549) than was
explained by the 1995 model (residual sums of squares
estimate=5630). The pattern in Fig. 7 is similar to
Fig. 3a, suggesting that the spatial covariance structure
was different between 1998 and 1995. In particular, the
spatial aggregations in 1998 may have been tighter, thus
the sill was probably higher and range shorter in 1998
than 1995.

We defined hake habitat as favorable at location
where fish densities were higher than 1100 individuals
and less favorable at locations where fish densities were
less than 1100 individuals, based on a break in the
histogram. Amount of favorable hake habitat was lower
in 1995 (16% of area considered in modeled) compared
to 1998 (51% of area considered in model) (Fig. 6).

4. Discussion

We use a Geostatistical approach to uncover potential
relationships between hake and its environment. This
approach allows us to account for dependence between
data points, a process we considered important in our
analysis. Biologists have traditionally relied on methods
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developed for independent data, even though indepen-
dence is an unrealistic assumption (Legendre, 1993).
The simplifying assumption that datum from one point
in space is not influenced by another datum in the study
at another point in space rarely holds true (Carroll and
Pearson, 2000). The presence of an organism at a
specific site is induced by a number of major forces such
as ocean currents, winds and climate. It is also induced
by the presence of another organism at a neighboring
site. Conducting tests based on independence could lead
to false identification of existing relationships.

Our results indicate that hake distribution is related to
poleward flow (a dynamic variable) and bottom depth (a
static variable). This relationship was identified by
incorporating a polynomial model (the mean effect
component) as well as a spatial autocorrelation com-
ponent in our model. Including both of these compo-
nents allowed us to identify and quantify important
relationships. It is interesting to note that our results
show that the shape of the relationship between hake
distribution and poleward flow would have been
different if an autocorrelation component had not been
included. Identifying dynamic relationships such as the
one between hake distribution and poleward flow is
challenging and tools effective at capturing dynamic
relationships as well as multiple processes are necessary.

Spatial approaches such as the one we used here
allow us to effectively explore mechanisms that may
explain the distribution of fish populations. Such an
understanding could not have been possible by simply
using general linear models. An understanding of the
process driving these distributions is essential in our
evaluation of the sustainability of fish stocks. Thus far
fishery science has tended to evaluate management
performance with indicators based on non-spatial
population dynamics models (Pauly et al., 2003),
Fig. 7. Fits of model with spatial autocorrelations predictions to 1998
data. Units: log number of fish.
ignoring inherent spatial variability of a stock's distri-
bution (Booth, 2000). For stocks such as Pacific hake
where the biology of the fish has a spatial component,
efforts should be made to incorporate spatial structure in
indicators.

We have become increasingly aware of the distribu-
tion patterns of many species, yet what drives these
distributions is often poorly understood, making
prediction a difficult task (Verity et al., 2002). We too
had difficulty applying our model when attempting to
predict habitat quantity in 1998; however, there were
several important differences between 1995 and 1998
that may have affected predictions of abundance in
1998. We applied the coefficients from the model fit to
1995 data to predict habitat quality in 1998; however,
our 1998 model fit (Fig. 7) clearly points out the need
for further refinement. Using a sub-set of the data
probably introduced some measurement and process
error. The range of habitat considered in the model we
built is located at the southern most edge of the adult
hake distribution (38–43°N). This area is occupied by a
mixture of juveniles and adults. It is difficult to
discriminate acoustic signal of smaller sizes (juveniles)
from signal for other organisms (e.g. euphasiids).
Measurement error is introduced here, as smaller sizes
might not be fully reported. This could be one of the
explanations for the inferior fit of the model to the 1998
data compared to the 1995 data, as in 1998 the
population reportedly shifted north (Wilson et al.,
2000; Helser et al., 2002) and fewer adults were
observed in southern areas. As can be seen in Fig. 7
the model does not do well with predicting ‘0 values’
(process error). Because of the shift north in the
population described above, the 1998 data set had a
higher number of locations with 0 fish. As a result, the
1998 model predictions were not as accurate as the 1995
model predictions. A model based on data from a
section of the hake habitat located farther north (e.g.
43°–48°N), where the majority of the population
sampled is older (fish size is bigger thus more accurately
sampled) and the area consistently occupied in both
1995 and 1998, could have been more informative. The
inaccuracy of 1998 model predictions also suggests that
the spatial autocorrelation function for the 1998 data
may be different than the autocorrelation function fit to
the 1995 data. These results also suggest that a unique
model should be fitted for El Niño years, as the
HMMAC model was not robust to the two year types.

The three dimensional nature of the data set
presented another challenge. Our model represents
hake habitat in two dimensions (latitude and longitude);
thus the three dimensional data had to be collapsed to
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two dimensions. There are a number of ways the under-
current could have been represented in the model; we
chose an average of current values in the 130–220 m
depth bins and measured the flow relative to the pole-
ward direction (i.e., current could have a negative
value). This choice might have affected our results by
focusing on an aspect of the current that may not have
been the most relevant to fish distribution. The reso-
lution of the acoustic data set used in this study allowed
us to examine hake habitat over a wide geographic range
at fine detail. Although powerful, this also presented
some challenges. The data set we used for this analysis
was very large (information on flow characteristics and
hake spanning 15° of latitude, ∼300,000 grid points/
year). Because of the large nature of the data set (thus
the computational power necessary to build a model
based on data from the entire hake distribution range),
we used a sub-set of the data in our analysis as outlined
above in the methods section. This allowed us to test
approaches and methods that could in the future be
applied to the entire data set and additional years.

The main aim of this study was to develop a
quantitative measure of hake habitat. Our goal was to
develop a metric that would quantify important
physical–biological linkages in the California Current
Ecosystem. Given the relationship between hake
distribution and the physical structure of the CC
described by a number of authors (Smith et al., 1990;
Dorn, 1995; Benson et al., 2002; Agostini et al., 2006)
and the importance of hake in the CC food web (Field,
2004) hake habitat was explored as a suitable metric.
Our results indicate that climate forcing affects the
spatial structure of hake habitat. Hake habitat in our
study area expands during a warm year El Niño year
(1998) and contracts during a cold year (1995) (Fig. 6).
Agostini et al. (2006) suggest that this may be due to
changes in the intensity and location of the poleward
current. Our study supports this hypothesis, and point to
the importance of accounting for physical processes in
the study of fish distribution.

In this study we apply a spatial approach to outline
hake habitat areas, and examine how climate forcing
may affect these areas. This addresses both spatial and
environmental processes of the CC system, facilitating
the inclusion of broader ecosystem considerations and
objectives in single species assessments and manage-
ment plans. While detailed single species assessments
still form the core of management advice in most cases,
they are increasingly embedded in an ecosystem con-
text, at least qualitatively (Mace, 2001). However, a
number of important classes of ecosystem interactions
are currently not being routinely evaluated (Sissenwinse
and Murawski, 2004). Amongst these are relationships
between biological and physical components of ecosys-
tems. The stability of biological communities is affected
by the interaction between life history, environmental
variation and fishing strategies (Sissenwinse and
Murawski, 2004). Accounting for interactions between
biological and physical components of the ecosystem
such as the one we examine here will not only help us
evaluate important ecosystem interactions, but it will
also help determine appropriate spatial scales of data
collection, science and management presently missing
from conventional single species management (Hilborn,
2004).

The desire to represent key ecosystem interactions
has lead to the recent focus on ecosystem indices. A
number of symposia and working groups have been
convened on this topic (e.g.: “Ecosystem Considerations
in Fishery Management”, Anchorage 1998; “Respon-
sible Fishing in the Marine Environment”, Reykjavik
2001; IOC-SCOR working group 119, “Quantitative
Indicators for Fisheries Management”, Paris 2004;
“Advancing Scientific Advice for an Ecosystem Ap-
proach to Fisheries”, Dublin 2004). Most of the indices
developed to date represent trophic interactions, while
work on indices representing interactions between
species and the physical environment is lagging behind.
Climate forcing of ecosystems has mostly been
described by large scale indices such as PDO and
ENSO. Climate impacts are aggregated across large
spatial scales and range of species and direct links are
made between climate forcing and production varia-
bility. However, changes in ecosystem structure are
often the result of changes in physical habitat with very
distinct spatial structure. In order to fully describe
ecosystems, spatially explicit indices directly represent-
ing physical–biological linkages should also be
developed.

The focus of this study on pelagic habitat of a key
trophic species addresses this issue. A quantitative
measure of hake habitat such as the one we develop here
could potentially serve as an ecosystem indicator. Hake
is one of the major predators in the northern CC system.
The amount and distribution of adult hake habitat has
large implications for the Pacific Northwest food web.
For example Field (2004) found that during warm years
when hake are more abundant in northern CC waters
(north of Cape Mendocino), there is an increase in
predation (particularly on pandalid shrimp and small
flatfish) and competition (for euphausiids, forage fish
and other prey of resident groundfish). The absence or
presence of hake in Pacific Northwest waters is likely
related to habitat suitability along its range of
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distribution. Changes in the amount of adult hake
habitat could serve as an indicator of changes in the
structure/energy flow of the northern CC ecosystem, as
changes in hake distribution could imply changes in the
productivity of other commercially and ecologically
important species. Metrics able to detect these types of
changes could be good ecosystem indicators, as they are
related to both the physical and biological structure of
the ecosystem. Examples of potential ecosystem
indicators are: % of hake habitat distributed north of
Latitude X, % of hake habitat distributed offshore of
longitude X, % of overall habitat defined as suitable
hake habitat, favorable/unfavorable habitat, (favorable
habitat)t+1− (favorable habitat)t.

Spatial structure and environmental processes are
discussed as essential to the development Ecosystem
Based Fishery Management (EBFM). However, as we
develop approaches to implement EBFM, habitat issues are
not receiving the attention they warrant. Most of the work
on habitat focuses on benthos, with knowledge of pelagic
habitat lagging behind. Studies such as this one will help to
increase the awareness of pelagic habitat and contribute to
the development of effective EBFM strategies.
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